留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Vitamin D deficiency and increased inflammatory factor intercellular cell adhesion molecule-1 indicate severe leukoaraiosis in northern China

Jiaxin Guan Lu Gan Chaoqi Yan Boyu Hou Ying Fan

Jiaxin Guan, Lu Gan, Chaoqi Yan, Boyu Hou, Ying Fan. Vitamin D deficiency and increased inflammatory factor intercellular cell adhesion molecule-1 indicate severe leukoaraiosis in northern China[J]. Frigid Zone Medicine, 2024, 4(2): 102-109. doi: 10.1515/fzm-2024-0011
Citation: Jiaxin Guan, Lu Gan, Chaoqi Yan, Boyu Hou, Ying Fan. Vitamin D deficiency and increased inflammatory factor intercellular cell adhesion molecule-1 indicate severe leukoaraiosis in northern China[J]. Frigid Zone Medicine, 2024, 4(2): 102-109. doi: 10.1515/fzm-2024-0011

Vitamin D deficiency and increased inflammatory factor intercellular cell adhesion molecule-1 indicate severe leukoaraiosis in northern China

doi: 10.1515/fzm-2024-0011
Funds: 

the National Natural Science Foundation of Heilongjiang Province of China LH2020H051

Key R&D projects of Natural Science Foundation of Heilongjiang Province 2023ZX06C03

Foundation of Harbin Science Technology Bureau of China 2014RFQGJ042

More Information
  • Figure  1.  Selection of participants for the control and Leukoaraiosis groups

    Figure  2.  Correlation between 25-hydroxyvitamin D and ICAM-1 levels

    Table  1.   Statistical methods for different data

    Data Statistical methods
    Normal distribution data Analysis of variance (ANOVA)
    Non normal distribution data Kruskal-Wallis H test
    Enumeration data Chi-squared test (χ2)
    Fisher's exact test
    Multivariate analysis Multiple logistic regression analysis
    Correlation analysis Spearman's rho analysis
    下载: 导出CSV

    Table  2.   Basic medical history of the Leukoaraiosis (LA) and control groupsa

    Control (N = 41) LA-mild (N = 43) LA-moderate (N =40) LA-severe (N =29) χ2/H P
    Gender M/F, N/N 18/23 22/21 14/26 14/15 2.408 0.492
    Age, y 63.00 (59.50, 70.00) 65.00 (60.00, 68.00) 66.00 (62.00, 70.75) 71.00 (63.00, 79.00)a 10.50 0.015
    LI 28 (68) 36 (83) 39 (98) 29 (100)a 20.302 < 0.001
    Smoking 6 (15) 15 (35) 78 (20) 6 (21) 5.269 0.153
    Drinking 1 (2) 12 (28)a 2 (5)b 3 (10) 16.048 0.001
    Diabetes 4 (10) 8 (19) 10 (25) 10 (34) 6.856 0.077
    Hypertension 15 (37) 20 (47) 23 (58) 20 (69)a 8.177 0.042
    CHD 6 (15) 10 (23) 8 (20) 4 (14) 1.546 0.672
    Data were presented as N (%), unless indicated otherwise. Age was not normally distributed among the 4 groups and was summarized using the median (interquartile 25, interquartile 75) and subjected to the Kruskal-Wallis H test.aCompared with control group, P < 0.05. bCompared with LA-mild, P < 0.05. CHD, coronary heart disease; LI, lacunar infarction.
    下载: 导出CSV

    Table  3.   Blood indicators of the Leukoaraiosis (LA) and control groups

    Control (N = 41) LA-mild (N = 43) LA-moderate (N =40) LA-severe (N =29) F P
    Apo B, g/L 1.03 ± 0.29 0.92 ± 0.23 0.96 ± 0.25 1.02 ± 0.31 1.503 0.216
    LDL, mmol/L 3.00 ± 0.85 2.65 ± 0.70 2.73 ± 0.84 2.95 ± 0.96 1.631 0.185
    ALB, g/L 43.35 ± 3.83 43.72 ± 3.38 43.69 ± 3.97 41.73 ± 3.88 1.992 0.118
    25(OH)D, ng/mL 33.59 ± 19.21 25.03 ± 13.63a 21.69 ± 9.86a 17.98 ± 8.70a, b 8.409 < 0.001
    Data were presented as mean±SD. aP < 0.05 compared with control group; bP < 0.05 compared with LA-mild group. Apo B, apolipoprotein B; ALB, albumin; LDL, low-density lipoprotein; 25(OH)D, 25-hydroxyvitamin D.
    下载: 导出CSV

    Table  4.   Blood indicators of the Leukoaraiosis (LA) and control groups

    Control (N = 41) LA-mild (N = 43) LA-moderate (N =40) LA-severe (N =29) H P
    HcyH, µmol/L 10.48 (8.56, 12.86) 11.59 (9.52, 13.25) 10.50 (9.02, 13.11) 10.17 (8.38, 13.60) 2.480 0.479
    ApoA1, g/L 1.25 (1.11, 1.37) 1.25 (1.11, 1.36) 1.28 (1.08, 1.45) 1.27 (1.10, 1.45) 0.040 0.998
    TC, mmol/L 4.78 (4.21, 5.71) 4.45 (3.86, 5.16) 4.73 (3.74, 5.63) 5.11 (3.92, 5.79) 4.292 0.232
    TG, mmol/L 1.35 (1.02, 1.74) 1.12 (0.86, 1.90) 1.46 (1.08, 2.24) 1.46 (1.08, 2.24) 4.820 0.185
    HDL, mmol/L 1.28 (1.05, 1.63) 1.29 (1.08, 1.51) 1.34 (1.07, 1.57) 1.24 (1.08, 1.53) 0.303 0.960
    FBG, mmol/L 5.37 (4.98, 5.77) 5.48 (4.89, 6.09) 5.35 (4.94, 6.67) 5.52 (4.88, 7.37) 1.701 0.637
    Cr, µmol/L 72.00 (64.50, 92.00) 71.00 (65.00, 80.00) 71.50 (61.25, 85.75) 72.00 (62.00, 89.00) 0.311 0.958
    UA, µmol/L 325.00 (277.80, 386.95) 307.00 (261.40, 404.90) 300.05 (236.00, 364.01) 308.80 (250.05, 385.95) 1.546 0.672
    FBG-C, g/L 2.93 (2.66, 3.36) 2.86 (2.65, 3.58) 3.18 (2.98, 3.63) 3.56 (3.14, 3.91)a, b 17.196 0.001
    ICAM-1, ng/mL 439.86 (346.10, 628.29) 584.38 (432.30, 632.81) 581.26 (514.33, 669.53) 620.31 (596.04, 757.30)a, b 21.247 < 0.001
    Data were presented as median (interquartile 25, interquartile 75). aP < 0.05 compared with control group; bP < 0.05 compared with LA-mild group. Abbreviations: ApoA1, apolipoprotein A; Cr, creatinine; FBG, fasting blood glucose; HcyH, homocysteine; HDL, high-density lipoprotein; TC, total cholesterol; TG, triglycerides; UA, uric acid.
    下载: 导出CSV

    Table  5.   Variable assignment table for multiple logistic regression

    Variable Name Variable assignment
    Dependent variable Leukoaraiosis severity Severe = 1, Moderate =2,
    Mild = 3, Not ill = 4
    Independent variable Gender Male = 1, Female = 0
    Lacunar infarction Yes = 1, No = 0
    Alcohol consumption Yes = 1, No = 0
    Hypertension Yes = 1, No = 0
    Age, y Continuous
    25-hydroxyvitamin D Continuous
    ICAM-1 Continuous
    FBG-C fibrinogen Continuous
    下载: 导出CSV

    Table  6.   Multiple logistic regression analysis of Leukoaraiosis

    b SE Wald χ2 P OR (95% CI)
    Gender 0.696 0.478 2.120 0.145 2.007 (0.786, 5.124)
    Lacunar infarction 1.432 0.675 4.499 0.034 4.187 (1.115 15.728)
    Alcohol consumption 3.266 1.234 7.008 0.008 26.219 (2.335, 294.387)
    Hypertension 0.308 0.476 0.419 0.517 1.361 (0.535, 3.459)
    Age, y 0.017 0.032 0.304 0.581 1.017 (0.924, 1.045)
    25-hydroxyvitamin D –0.055 0.016 12.345 < 0.001 0.946 (1.025, 1.090)
    ICAM-1 0.005 0.001 9.616 0.002 1.005 (0.992, 0.998)
    FBG-C fibrinogen 0.031 0.350 0.008 0.929 1.031 (0.488, 1.925)
    b, regression coefficient; CI, confidence interval; OR, odds ratio; SE, standard error.
    下载: 导出CSV
  • [1] Wardlaw J M, Smith E E, Biessels G J, et al. Neuroimaging standards neurodegeneration. Lancet Neurol, 2013; 12(8): 822-838. doi: 10.1016/S1474-4422(13)70124-8
    [2] Cannistraro R J, Badi M, Eidelman B H, et al. CNS small vessel disease: A clinical review. Neurology, 2019; 92(24): 1146-1156. doi: 10.1212/WNL.0000000000007654
    [3] Su N, Zhai F F, Zhou LX, et al. Cerebral small vessel disease burden is associated with motor performance of lower and upper extremities in community-dwelling populations. Front Aging Neurosci, 2017; 9: 313. doi: 10.3389/fnagi.2017.00313
    [4] Zhi N, Zhang L, Wang Y, et al. Modified cerebral small vessel disease score is associated with vascular cognitive impairment after lacunar stroke. Aging (Albany NY), 2021; 13(7): 9510-9521. doi: 10.18632/aging.202438
    [5] van der Holst H M, van Uden I W, Tuladhar A M, et al. Factors associated with 8-year mortality in older patients with cerebral small vessel disease: the radboud university nijmegen diffusion tensor and magnetic resonance cohort (RUN DMC) study. JAMA Neurol, 2016; 73(4): 402-409. doi: 10.1001/jamaneurol.2015.4560
    [6] Wardlaw J M, Chappell F M, Valdes Hernandez M D C, et al. White matter hyperintensity reduction and outcomes after minor stroke. Neurology, 2017; 89(10): 1003-1010. doi: 10.1212/WNL.0000000000004328
    [7] Jiaerken Y, Luo X, Yu X, et al. Microstructural and metabolic changes in the longitudinal progression of white matter hyperintensities. J Cereb Blood Flow Metab, 2019; 39(8): 1613-1622. doi: 10.1177/0271678X18761438
    [8] Howard D P J, Gaziano L, Rothwell P M, et al. Risk of stroke in relation to degree of asymptomatic carotid stenosis: a population-based cohort study, systematic review, and meta-analysis. Lancet Neurol, 2021; 20(3): 193-202. doi: 10.1016/S1474-4422(20)30484-1
    [9] Bernbaum M, Menon B K, Fick G, et al. Reduced blood flow in normal white matter predicts development of leukoaraiosis. J Cereb Blood Flow Metab, 2015; 35(10): 1610-1615. doi: 10.1038/jcbfm.2015.92
    [10] Promjunyakul N O, Dodge H H, Lahna D, et al. Baseline NAWM structural integrity and CBF predict periventricular WMH expansion over time. Neurology, 2018; 90(24): e2119-e2126. doi: 10.1212/WNL.0000000000005684
    [11] Philips T Rothstein J D. Oligodendroglia: metabolic supporters of neurons. J Clin Invest, 2017; 127(9): 3271-3280. doi: 10.1172/JCI90610
    [12] Sargurupremraj M, Suzuki H, Jian X, et al. Cerebral small vessel disease genomics and its implications across the lifespan. Nat Commun, 2020; 11(1): 6285. doi: 10.1038/s41467-020-19111-2
    [13] Gardener H, Caunca M, Dong C, et al. Ideal cardiovascular health and biomarkers of subclinical brain aging: the northern Manhattan study. J Am Heart Assoc, 2018; 7(16): e009544. doi: 10.1161/JAHA.118.009544
    [14] Shu Z, Xu Y, Shao Y, et al. Radiomics from magnetic resonance imaging may be used to predict the progression of white matter hyperintensities and identify associated risk factors. Eur Radiol, 2020; 30(6): 3046-3058. doi: 10.1007/s00330-020-06676-1
    [15] Shu Z Y, Shao Y, Xu Y Y, et al. Radiomics nomogram based on MRI for predicting white matter hyperintensity progression in elderly adults. J Magn Reson Imaging, 2020; 51(2): 535-546. doi: 10.1002/jmri.26813
    [16] Whitman G T, Tang Y, Lin A, et al. A prospective study of cerebral white matter abnormalities in older people with gait dysfunction. Neurology, 2001; 57(6): 990-994. doi: 10.1212/WNL.57.6.990
    [17] Lin L, Zhang Y, Zeng Q, et al. Atherosclerosis, inflammatory factor changes, cognitive disorder and vascular endothelial functions in patients with different grades of leukoaraiosis. Clin Hemorheol Microcirc, 2019; 73(4): 591-597. doi: 10.3233/CH-190597
    [18] Xue J, Wu Z, Gong S, et al. High-dose atorvastatin improves vascular endothelial function in patients with leukoaraiosis. J Clin Lab Anal, 2020; 34(3): e23081. doi: 10.1002/jcla.23081
    [19] Arba F, Giannini A, Piccardi B, et al. Small vessel disease and biomarkers of endothelial dysfunction after ischaemic stroke. Eur Stroke J, 2019; 4(2): 119-126. doi: 10.1177/2396987318805905
    [20] Cao G Z, Hou J Y, Zhou R, et al. Single-cell RNA sequencing reveals that VIM and IFITM3 are vital targets of Dengzhan Shengmai capsule to protect against cerebral ischemic injury. J Ethnopharmacol, 2023; 311: 116439. doi: 10.1016/j.jep.2023.116439
    [21] Johnson C R, Thacher T D. Vitamin D: immune function, inflammation, for research into small vessel disease and its contribution to ageing and infections and auto-immunity. Paediatr Int Child Health, 2023; 43(4): 29-39. doi: 10.1080/20469047.2023.2171759
    [22] Zhou A, Hypponen E. Vitamin D deficiency and C-reactive protein: a bidirectional Mendelian randomization study. Int J Epidemiol, 2023; 52(1): 260-271. doi: 10.1093/ije/dyac087
    [23] Jin D, Zhu D M, Hu H L, et al. Vitamin D status affects the relationship between lipid profile and high-sensitivity C-reactive protein. Nutr Metab (Lond), 2020; 17: 57. doi: 10.1186/s12986-020-00455-x
    [24] Meng J, Xu Y R, Miao X H, et al. A retrospective study on serum 25 (OH) D level of the sampled population in a hospital in Heilongjiang province. Chinese Journal of Osteoporosis, 2022; 28(1): 62-69.
    [25] Li L, Zhao YX, Sun G W, et al. Analysis of the content of adult 25-hydroxyvitamin D in Heilongjiang Province. Cardiovascular Disease Journal of Integrated Traditional Chinese and Western Medicine (Electronic), 2018; 6(27): 187, 190.
    [26] Fazekas F, Deisenhammer F, Strasser-Fuchs S, et al. Randomised placebo-controlled trial of monthly intravenous immunoglobulin therapy in relapsing-remitting multiple sclerosis. Austrian Immunoglobulin in Multiple Sclerosis Study Group. Lancet, 1997; 349(9052): 589-593. doi: 10.1016/S0140-6736(96)09377-4
    [27] Guan J, Yan C, Gao Q, et al. Analysis of risk factors in patients with leukoaraiosis. Medicine (Baltimore), 2017; 96(8): e6153. doi: 10.1097/MD.0000000000006153
    [28] Leung L Y, Bartz T M, Rice K, et al. Blood pressure and heart rate measures associated with increased risk of covert brain infarction and worsening leukoaraiosis in older adults. Arterioscler Thromb Vasc Biol, 2017; 37(8): 1579-1586. doi: 10.1161/ATVBAHA.117.309298
    [29] Levit A, Hachinski V, Whitehead S N. Neurovascular unit dysregulation, white matter disease, and executive dysfunction: the shared triad of vascular cognitive impairment and Alzheimer disease. Geroscience, 2020; 42(2): 445-465. doi: 10.1007/s11357-020-00164-6
    [30] Drieu A, Lanquetin A, Levard D, et al. Alcohol exposure-induced neurovascular inflammatory priming impacts ischemic stroke and is linked with brain perivascular macrophages. JCI Insight, 2020; 5(4): e129226. doi: 10.1172/jci.insight.129226
    [31] Bustamante A, Lopez-Cancio E, Pich S, et al. Blood biomarkers for the early diagnosis of stroke: the stroke-chip study. Stroke, 2017; 48(9): 2419-2425. doi: 10.1161/STROKEAHA.117.017076
    [32] Bembenek J P, Niewada M, Siudut J, et al. Fibrin clot characteristics in acute ischaemic stroke patients treated with thrombolysis: the impact on clinical outcome. Thromb Haemost, 2017; 117(7): 1440-1447. doi: 10.1160/TH16-12-0954
    [33] Ashouri R, Fangman M, Brielmaier J, et al. Nutritional supplementation of naturally occurring vitamin D to improve hemorrhagic stroke outcomes. Front Neurol, 2021; 12: 670245. doi: 10.3389/fneur.2021.670245
    [34] Fu Y, Yan Y. Emerging role of immunity in cerebral small vessel disease. Front Immunol, 2018; 9: 67. doi: 10.3389/fimmu.2018.00067
    [35] Shi L, Zhang Q, Song S N, et al. Correlation between 25-hydroxyvitamin D level and arterial elasticity in middle-aged and elderly cadres in Guiyang, China: A retrospective observational study. Medicine (Baltimore), 2021; 100(18): e25826. doi: 10.1097/MD.0000000000025826
    [36] Miao J, Bachmann K N, Huang S, et al. Effects of vitamin D supplementation on cardiovascular and glycemic biomarkers. J Am Heart Assoc, 2021; 10(10): e017727. doi: 10.1161/JAHA.120.017727
    [37] An J H, Cho D H, Lee G Y, et al. Effects of vitamin D supplementation on CD4(+) T cell subsets and mtor signaling pathway in high-fat-diet-induced obese mice. Nutrients, 2021; 13(3): 796. doi: 10.3390/nu13030796
    [38] Boontanrart M, Hall S D, Spanier J A, et al. Vitamin D3 alters microglia immune activation by an IL-10 dependent SOCS3 mechanism. J Neuroimmunol, 2016; 292: 126-136. doi: 10.1016/j.jneuroim.2016.01.015
    [39] Evans M A, Kim H A, Ling Y H, et al. Vitamin D3 supplementation reduces subsequent brain injury and inflammation associated with ischemic stroke. Neuromolecular Med, 2018; 20(1): 147-159. doi: 10.1007/s12017-018-8484-z
  • 加载中
图(2) / 表(6)
计量
  • 文章访问数:  146
  • HTML全文浏览量:  84
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-12
  • 录用日期:  2024-04-25
  • 网络出版日期:  2024-08-07

目录

    /

    返回文章
    返回