留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Impacts of cold exposure on energy metabolism

Miao Yan Shanjie Wang Shaohong Fang Mingyan E Bo Yu

Miao Yan, Shanjie Wang, Shaohong Fang, Mingyan E, Bo Yu. Impacts of cold exposure on energy metabolism[J]. Frigid Zone Medicine, 2024, 4(2): 65-71. doi: 10.1515/fzm-2024-0007
Citation: Miao Yan, Shanjie Wang, Shaohong Fang, Mingyan E, Bo Yu. Impacts of cold exposure on energy metabolism[J]. Frigid Zone Medicine, 2024, 4(2): 65-71. doi: 10.1515/fzm-2024-0007

Impacts of cold exposure on energy metabolism

doi: 10.1515/fzm-2024-0007
Funds: 

the National Natural Science Foundation of China 82170262

Heilongjiang Province Applied Technology Research and Development Plan GA20C009

The Natural Science Foundation of Heilongjiang Province TD2020H001

More Information
  • Figure  1.  Cold exposure affects energy metabolism and participates in the occurrence and development of metabolic diseases

    BCAA, branched chain amino acids; TRL, triglyceride-rich lipoproteins.

  • [1] Alahmad B, Khraishah H, Roye D, et al. Associations between extreme temperatures and cardiovascular cause-specific mortality: results from 27 countries. Circulation, 2023; 147(1): 35-46. doi: 10.1161/CIRCULATIONAHA.122.061832
    [2] Bosy-Westphal A, Hagele F A, Muller M J. What is the impact of energy expenditure on energy intake? Nutrients, 2021; 13(10): 3508 doi: 10.3390/nu13103508
    [3] Liu F, Xiao Y, Ji X L, et al. The cAMP-PKA pathway-mediated fat mobilization is required for cold tolerance in C. elegans. Sci Rep, 2017; 7(1): 638. doi: 10.1038/s41598-017-00630-w
    [4] Straat M E, Jurado-Fasoli L, Ying Z, et al. Cold exposure induces dynamic changes in circulating triacylglycerol species, which is dependent on intracellular lipolysis: a randomized cross-over trial. EBioMedicine, 2022; 86: 104349. doi: 10.1016/j.ebiom.2022.104349
    [5] Kovanicova Z, Kurdiova T, Balaz M, et al. Cold exposure distinctively modulates parathyroid and thyroid hormones in cold-acclimatized and non-acclimatized humans. Endocrinology, 2020; 161(7): bqaa051 doi: 10.1210/endocr/bqaa051
    [6] Chen R, Yin P, Wang L, et al. Association between ambient temperature and mortality risk and burden: time series study in 272 main Chinese cities. BMJ, 2018; 363: k4306. doi: 10.1136/bmj.k4306
    [7] Chen Y, Ji H, Guo J, et al. Non-targeted metabolomics analysis based on LC-MS to assess the effects of different cold exposure times on piglets. Front Physiol, 2022; 13: 853995. doi: 10.3389/fphys.2022.853995
    [8] Ruperez C, Blasco-Roset A, Kular D, et al. Autophagy is Involved in cardiac remodeling in response to environmental temperature change. Front Physiol, 2022; 13: 864427. doi: 10.3389/fphys.2022.864427
    [9] Hanssen M J, Hoeks J, Brans B, et al. Short-term cold acclimation improves insulin sensitivity in patients with type 2 diabetes mellitus. Nat Med, 2015; 21(8): 863-865. doi: 10.1038/nm.3891
    [10] Hanssen M J, Wierts R, Hoeks J, et al. Glucose uptake in human brown adipose tissue is impaired upon fasting-induced insulin resistance. Diabetologia, 2015; 58(3): 586-595. doi: 10.1007/s00125-014-3465-8
    [11] Lahesmaa M, Oikonen V, Helin S, et al. Regulation of human brown adipose tissue by adenosineand A2A receptors - studies with [15O]H2O and [11C]TMSX PET/CT. Eur J Nucl Med Mol Imaging, 2019; 46(3): 743-750. doi: 10.1007/s00259-018-4120-2
    [12] Matsushita M, Nirengi S, Hibi M, et al. Diurnal variations of brown fat thermogenesis and fat oxidation in humans. Int J Obes (Lond), 2021; 45(11): 2499-2505. doi: 10.1038/s41366-021-00927-x
    [13] Lee W C, Guntur A R, Long F. Energy metabolism of the osteoblast: implications for osteoporosis. Endocr Rev, 2017; 38(3): 255-266. doi: 10.1210/er.2017-00064
    [14] Riis-Vestergaard M J, Laustsen C, Mariager C O, et al. Glucose metabolism in brown adipose tissue determined by deuterium metabolic imaging in rats. Int J Obes (Lond), 2020; 44(6): 1417-1427. doi: 10.1038/s41366-020-0533-7
    [15] Kim Y C, Guan K L. mTOR: a pharmacologic target for autophagy regulation. J Clin Invest. 2015; 125(1): 25-32. doi: 10.1172/JCI73939
    [16] Hua H, Kong Q, Zhang H, et al. Targeting mTOR for cancer therapy. J Hematol Oncol, 2019; 12(1): 71. doi: 10.1186/s13045-019-0754-1
    [17] Castro E, Vieira T S, Oliveira T E, et al. Adipocyte-specific mTORC2 deficiency impairs BAT and iWAT thermogenic capacity without affecting glucose uptake and energy expenditure in cold-acclimated mice. Am J Physiol Endocrinol Metab, 2021; 321(5): E592-E605. doi: 10.1152/ajpendo.00587.2020
    [18] Lewis G F, Brubaker P L. The discovery of insulin revisited: lessons for the modern era. J Clin Invest, 2021; 131(1): e142239. doi: 10.1172/JCI142239
    [19] Harrison V S, Khan M H, Chamberlain C E, et al. The noble and often nobel role played by insulin-focused research in modern medicine. Diabetes Care, 2022; 45(1): 23-27. doi: 10.2337/dci21-0012
    [20] Scheel A K, Espelage L, Chadt A. Many ways to rome: exercise, cold exposure and diet-do they all affect BAT activation and WAT browning in the same manner? Int J Mol Sci, 2022; 23(9): 4759. doi: 10.3390/ijms23094759
    [21] Markan K R, Boland L K, King-McAlpin A Q, et al. Adipose TBX1 regulates beta-adrenergic sensitivity in subcutaneous adipose tissue and thermogenic capacity in vivo. Mol Metab, 2020; 36: 100965. doi: 10.1016/j.molmet.2020.02.008
    [22] Monfort-Pires M, U-Din M, Nogueira G A, et al. Short dietary intervention with olive oil increases brown adipose tissue activity in lean but not overweight subjects. J Clin Endocrinol Metab, 2021; 106(2): 472-484. doi: 10.1210/clinem/dgaa824
    [23] Nascimento E B M, Hangelbroek R W J, Hooiveld G, et al. Comparative transcriptome analysis of human skeletal muscle in response to cold acclimation and exercise training in human volunteers. BMC Med Genomics, 2020; 13(1): 124. doi: 10.1186/s12920-020-00784-z
    [24] Huang S, Cao L, Cheng H, et al. The blooming intersection of subfatin and metabolic syndrome. Rev Cardiovasc Med, 2021; 22(3): 799-805. doi: 10.31083/j.rcm2203086
    [25] Du Q, Wu J, Fischer C, et al. Generation of mega brown adipose tissue in adults by controlling brown adipocyte differentiation in vivo. Proc Natl Acad Sci USA, 2022; 119(40): e2203307119. doi: 10.1073/pnas.2203307119
    [26] Sellers A J, Pallubinsky H, Rense P, et al. The effect of cold exposure with shivering on glucose tolerance in healthy men. J Appl Physiol, 2021; 130(1): 193-205. doi: 10.1152/japplphysiol.00642.2020
    [27] Bahler L, Verberne H J, Admiraal W M, et al. Differences in sympathetic nervous stimulation of brown adipose tissue between the young and old, and the lean and obese. J Nucl Med, 2016; 57(3): 372-377. doi: 10.2967/jnumed.115.165829
    [28] Merchan-Ramirez E, Sanchez-Delgado G, Arrizabalaga-Arriazu C, et al. Thyroid function is not associated with brown adipose tissue volume and 18F-fluorodeoxyglucose uptake in young euthyroid adults. Eur J Endocrino, 2021; 185(2): 209-218. doi: 10.1530/EJE-21-0192
    [29] Park H J, Jang H R, Park S Y, et al. The essential role of fructose-1, 6-bisphosphatase 2 enzyme in thermal homeostasis upon cold stress. Exp Mol Med, 2020; 52(3): 485-496. doi: 10.1038/s12276-020-0402-4
    [30] Remmerie A, Scott CL. Macrophages and lipid metabolism. Cell Immunol, 2018; 330: 27-42. doi: 10.1016/j.cellimm.2018.01.020
    [31] Li Z, Zhang H. Reprogramming of glucose, fatty acid and amino acid metabolism for cancer progression. Cell Mol Life Sci, 2016; 73(2): 377-392. doi: 10.1007/s00018-015-2070-4
    [32] Straat M E, Martinez-Tellez B, Sardjoe Mishre A, et al. Cold-induced thermogenesis shows a diurnal variation that unfolds differently in males and females. J Clin Endocrinol Metab, 2022; 107(6): 1626-1635. doi: 10.1210/clinem/dgac094
    [33] Von Bank H, Kirsh C, Simcox J. Aging adipose: depot location dictates age-associated expansion and dysfunction. Ageing Res Rev, 2021; 67: 101259. doi: 10.1016/j.arr.2021.101259
    [34] Pernes G, Morgan P K, Huynh K, et al. Characterization of the circulating and tissue-specific alterations to the lipidome in response to moderate and major cold stress in mice. Am J Physiol Regul Integr Comp Physiol, 2021; 320(2): R95-104. doi: 10.1152/ajpregu.00112.2020
    [35] Crandall J P, Fraum T J, Wahl R L. Brown adipose tissue: a protective mechanism against "preprediabetes"? J Nucl Med, 2022; 63(9): 1433-1440. doi: 10.2967/jnumed.121.263357
    [36] Cero C, Lea H J, Zhu K Y, et al. beta3-Adrenergic receptors regulate human brown/beige adipocyte lipolysis and thermogenesis. JCI Insight, 2021; 6(11): e139160. doi: 10.1172/jci.insight.139160
    [37] Chen CC, Kuo C H, Leu Y L, et al. Corylin reduces obesity and insulin resistance and promotes adipose tissue browning through SIRT-1 and beta3-AR activation. Pharmacol Res, 2021; 164: 105291. doi: 10.1016/j.phrs.2020.105291
    [38] Sorensen-Zender I, Bhayana S, Susnik N, et al. Zinc-alpha2-Glycoprotein exerts antifibrotic effects in kidney and heart. J Am Soc Nephrol, 2015; 26(11): 2659-2668. doi: 10.1681/ASN.2014050485
    [39] Ryden M, Agustsson T, Andersson J, et al. Adipose zinc-alpha2-glycoprotein is a catabolic marker in cancer and noncancerous states. J Intern Med, 2012; 271(4): 414-420. doi: 10.1111/j.1365-2796.2011.02441.x
    [40] Fan G, Li Y, Ma F, et al. Zinc-alpha2-glycoprotein promotes skeletal muscle lipid metabolism in cold-stressed mice. Endocr J, 2021; 68(1): 53-62. doi: 10.1507/endocrj.EJ20-0179
    [41] Bjertnaes L J, Naesheim T O, Reierth E, et al. Physiological changes in subjects exposed to accidental hypothermia: an update. Front Med (Lausanne), 2022; 9: 824395. doi: 10.3389/fmed.2022.824395
    [42] Hong A E, Ryu M S, Lim I K. Proper regulation of beta-adrenergic signal requires Btg2 gene for lipolysis and thermogenesis in response to starvation or cold acclimation in female mice. J Nutr Biochem, 2023; 111: 109160. doi: 10.1016/j.jnutbio.2022.109160
    [43] Bleher M, Meshko B, Cacciapuoti I, et al. Egr1 loss-of-function promotes beige adipocyte differentiation and activation specifically in inguinal subcutaneous white adipose tissue. Sci Rep, 2020; 10(1): 15842. doi: 10.1038/s41598-020-72698-w
    [44] Miao Y, Qin H, Zhong Y, et al. Novel adipokine asprosin modulates browning and adipogenesis in white adipose tissue. J Endocrinol, 2021; 249(2): 83-93. doi: 10.1530/JOE-20-0503
    [45] Romere C, Duerrschmid C, Bournat J, et al. Asprosin, a fasting-induced glucogenic protein hormone. Cell, 2016; 165(3): 566-579. doi: 10.1016/j.cell.2016.02.063
    [46] Shamsi F, Wang C H, Tseng Y H. The evolving view of thermogenic adipocytes - ontogeny, niche and function. Nat Rev Endocrinol, 2021; 17(12): 726-744. doi: 10.1038/s41574-021-00562-6
    [47] Shamsi F, Xue R, Huang T L, et al. FGF6 and FGF9 regulate UCP1 expression independent of brown adipogenesis. Nat Commun, 2020; 11(1): 1421. doi: 10.1038/s41467-020-15055-9
    [48] Tabe Y, Lorenzi P L, Konopleva M. Amino acid metabolism in hematologic malignancies and the era of targeted therapy. Blood, 2019; 134(13): 1014-1023. doi: 10.1182/blood.2019001034
    [49] Li C, Wu B, Li Y, et al. Amino acid catabolism regulates hematopoietic stem cell proteostasis via a GCN2-eIF2alpha axis. Cell Stem Cell, 2022; 29(7): 1119-1134 doi: 10.1016/j.stem.2022.06.004
    [50] Yang L, Chu Z, Liu M, et al. Amino acid metabolism in immune cells: essential regulators of the effector functions, and promising opportunities to enhance cancer immunotherapy. J Hematol Oncol, 2023; 16(1): 59. doi: 10.1186/s13045-023-01453-1
    [51] McGarrah R W, White P J. Branched-chain amino acids in cardiovascular disease. Nat Rev Cardiol, 2023; 20(2): 77-89. doi: 10.1038/s41569-022-00760-3
    [52] Huang Y, Zhou M, Sun H, et al. Branched-chain amino acid metabolism in heart disease: an epiphenomenon or a real culprit? Cardiovasc Res, 2011; 90(2): 220-223. doi: 10.1093/cvr/cvr070
    [53] Li Y, Ping X, Zhang Y, et al. Comparative transcriptome profiling of cold exposure and beta3-AR agonist CL316, 243-induced browning of white fat. Front Physiol, 2021; 12: 667-698. doi: 10.3389/fphys.2021.667698
    [54] Teng T, Song X, Sun G, et al. Glucose supplementation improves intestinal amino acid transport and muscle amino acid pool in pigs during chronic cold exposure. Anim Nutr, 2023; 12: 360-374. doi: 10.1016/j.aninu.2022.10.009
    [55] Yoneshiro T, Wang Q, Tajima K, et al. BCAA catabolism in brown fat controls energy homeostasis through SLC25A44. Nature, 2019; 572(7771): 614-619. doi: 10.1038/s41586-019-1503-x
    [56] Cannavino J, Shao M, An YA, et al. Regulation of cold-induced thermogenesis by the RNA binding protein FAM195A. Proc Natl Acad Sci USA, 2021; 118(23): e2104650118. doi: 10.1073/pnas.2104650118
    [57] Cruzat V, Macedo Rogero M, Noel Keane K, et al. Glutamine: metabolism and immune function, supplementation and clinical translation. Nutrients, 2018; 10(11): 1564 doi: 10.3390/nu10111564
    [58] Smedberg M, Wernerman J. Is the glutamine story over? Crit Care, 2016; 20(1): 361. doi: 10.1186/s13054-016-1531-y
    [59] Okamatsu-Ogura Y, Kuroda M, Tsutsumi R, et al. UCP1-dependent and UCP1-independent metabolic changes induced by acute cold exposure in brown adipose tissue of mice. Metabolism, 2020; 113: 154396. doi: 10.1016/j.metabol.2020.154396
    [60] Lian S, Li W, Wang D, et al. Effects of prenatal cold stress on maternal serum metabolomics in rats. Life Sci, 2020; 246: 117432. doi: 10.1016/j.lfs.2020.117432
    [61] Shahcheraghi S H, Aljabali A A A, Al Zoubi M S, et al. Overview of key molecular and pharmacological targets for diabetes and associated diseases. Life Sci, 2021; 278: 119632. doi: 10.1016/j.lfs.2021.119632
    [62] Aubert G, Vega R B, Kelly D P. Perturbations in the gene regulatory pathways controlling mitochondrial energy production in the failing heart. Biochim Biophys Acta, 2013; 1833(4): 840-847. doi: 10.1016/j.bbamcr.2012.08.015
    [63] Samuel V T, Petersen K F, Shulman G I. Lipid-induced insulin resistance: unravelling the mechanism. Lancet, 2010; 375(9733): 2267-2277. doi: 10.1016/S0140-6736(10)60408-4
    [64] Remie C M E, Moonen M P B, Roumans K H M, et al. Metabolic responses to mild cold acclimation in type 2 diabetes patients. Nat Commun, 2021; 12(1): 1516. doi: 10.1038/s41467-021-21813-0
    [65] Pace N P, Vassallo J, Calleja-Agius J. Gestational diabetes, environmental temperature and climate factors - from epidemiological evidence to physiological mechanisms. Early Hum Dev, 2021; 155: 105219. doi: 10.1016/j.earlhumdev.2020.105219
    [66] Perez L C, Perez L T, Nene Y, et al. Interventions associated with brown adipose tissue activation and the impact on energy expenditure and weight loss: a systematic review. Front Endocrinol (Lausanne), 2022; 13: 1037458. doi: 10.3389/fendo.2022.1037458
    [67] Um J H, Park S Y, Hur J H, et al. Bone morphogenic protein 9 is a novel thermogenic hepatokine secreted in response to cold exposure. Metabolism, 2022; 129: 155139. doi: 10.1016/j.metabol.2022.155139
    [68] Aldiss P, Lewis J E, Lupini I, et al. Cold exposure drives weight gain and adiposity following chronic suppression of brown adipose tissue. Int J Mol Sci, 2022; 23(3): 1869 doi: 10.3390/ijms23031869
    [69] Yuneva M. Cold exposure as anti-cancer therapy. Cancer Cell, 2022; 40(10): 1092-1094. doi: 10.1016/j.ccell.2022.09.008
    [70] Tseng Y H. Adipose tissue in communication: within and without. Nat Rev Endocrinol, 2023; 19(2): 70-71. doi: 10.1038/s41574-022-00789-x
    [71] Seki T, Yang Y, Sun X, et al. Brown-fat-mediated tumour suppression by cold-altered global metabolism. Nature, 2022; 608(7922): 421-428. doi: 10.1038/s41586-022-05030-3
    [72] Gandhi S, Oshi M, Murthy V, et al. Enhanced thermogenesis in triple-negative breast cancer is associated with pro-tumor immune microenvironment. Cancers (Basel), 2021; 13(11): 2559. doi: 10.3390/cancers13112559
    [73] Schaltenberg N, John C, Heine M, et al. Endothelial lipase is involved in cold-induced high-density lipoprotein turnover and reverse cholesterol transport in Mice. Front Cardiovasc Med, 2021; 8: 628235. doi: 10.3389/fcvm.2021.628235
    [74] Ying Z, van Eenige R, Beerepoot R, et al. Mirabegron-induced brown fat activation does not exacerbate atherosclerosis in mice with a functional hepatic ApoE-LDLR pathway. Pharmacol Res, 2023; 187: 106634. doi: 10.1016/j.phrs.2022.106634
    [75] Kong X, Liu H, He X, et al. Unraveling the mystery of cold stress-induced myocardial injury. Front Physiol, 2020; 11: 580811. doi: 10.3389/fphys.2020.580811
    [76] Kashiwagi Y, Komukai K, Kimura H, et al. Therapeutic hypothermia after cardiac arrest increases the plasma level of B-type natriuretic peptide. Sci Rep, 2020; 10(1): 15545. doi: 10.1038/s41598-020-72703-2
    [77] Wu C I, Lu Y Y, Chen Y C, et al. The AMP-activated protein kinase modulates hypothermia-induced J wave. Eur J Clin Invest, 2020; 50(6): e13247. doi: 10.1111/eci.13247
  • 加载中
图(1)
计量
  • 文章访问数:  253
  • HTML全文浏览量:  133
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-22
  • 录用日期:  2024-01-31
  • 网络出版日期:  2024-08-07

目录

    /

    返回文章
    返回